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ABSTRACT 

Our aim i n  t h i s  a r t i c l e  i s  t o  present  some r e s u l t s  concerning the i n t e r -  

a c t i o n  of small and l a r g e  edd ie s  i n  two dimensional t u r b u l e n t  flows. W e  show 

t h a t  t h e  amplitude of small s t r u c t u r e s  decays exponen t i a l ly  t o  a small value 

and we i n f e r  from t h i s  a s impl i f i ed  i n t e r a c t i o n  l a w  of small and l a r g e  

edd ie s .  Beside t h e i r  i n t r i n s i c  i n t e r e s t  f o r  the understanding of t he  phys ic s  

of t u rbu lence ,  t hese  r e s u l t s  l ead  t o  new numerical schemes which w i l l  be 

s t u d i e d  i n  a s e p a r a t e  work. 
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INTRODUCTION 

The conventional theory of turbulence in space dimension three implies 

the existence of a length ld which is small in comparison with the macro- 

scopical length 10 connected to the geometry, and which is such that the 

eddies of size less than are damped by the effect of viscosity and become 

rapidly small in amplitude; the length Id is called the Kolmogorov dissipa- 

tion length [8 ] .  In space dimension two the situation is similar, but ld is 

replaced by the larger length 1 introduced by Kraichnan [ 9 ] .  It is one 

of our aims in this article to derive directly from the Navier-Stokes equa- 

tions and without any phenomenological consideration a mathematically rigorous 

proof of this property: the exponential decay of the small eddies toward a 

small value. Note however that the cut-off size between small and large 

or even Id, and this is due in part to the eddies is much smaller than 

high level of generality allowed here where singular flows can be considered 

such as those generated by flows in nonsmooth cavities, like the flow in a 

rectangular cavity. A physical discussion on the necessary cut-off length is 

presented hereaf ter . 

ld 

X 

IX 

Our approach is the following one: the Navier-Stokes equations of two 

dimensional viscous uncompressible flows are written as 

- -  au VAU + (u V)u - VF = f 
at 

in Sl x R+ 

- -  
where u = u(x,t) = (ul, u2) is the velocity vector, w = w(x,t) is the 

pressure, f represents volume forces, v > 0 is the kinematic visco'sity. As 
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usual (0.1)(0.2) are supplemented by boundary conditions which could be f o r  

instance 

(0.3a) u = 0 on an 

o r  

(0.3b) u v_ = 0, v_xcurlu = 0 on an, v_ - the unit outward normal on an, 

or 

- - 

- 
(0.3~) n = (0,Ll)x(0,~2) and u, w are periodic of period ti in the 

direction xi, i = 1,2. 

Our emphasis here will be on the space periodic case (0.3c), but the 

other boundary conditions will be considered as well. In all cases (0.1) - 
(0.3) reduces to an abstract evolution equation for u in an appropriate 

Hilbert space H: 

du - +  v AU + B(u) f f. dt 

The operator A linear, self-adjoint unbounded positive in H with domain 

D(A)  C H, is the Stokes operator. Since A-l is compact self adjoint, A 

possesses a complete family of eigenvectors wj which is orthonormal in H 

Awj = Xjwj, j = 1,2,*** 
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A j + E Q  as j + ~  . 

Of course  i n  the space p e r i o d i c  case ( 0 . 3 ~ )  t h e  are d i r e c t l y  r e l a t e d  t o  

t h e  a p p r o p r i a t e  s i n  and cos  func t ions  of t h e  F o u r i e r  series expansion (see 

[12]). The ope ra to r  B i s  a quadra t ic  ope ra to r ;  B(u) = B(u,u), where 

B ( * , * )  i s  a b i l i n e a r  compact operator  from D(A) i n t o  H. 

wj 

For  f i x e d  m we denote  by P = Pm t h e  p r o j e c t o r  i n  H on to  the  space 

spanned by w1,.**,wm, and we wr i te  Q = Qm = I - Pm. We se t  

and we show t h a t ,  a f t e r  a t r a n s i e n t  per iod ,  and f o r  va r ious  norms, p i s  

comparable t o  u ,  and q is small i n  comparison wi th  p and u ( s e e  Sec. 1). 

W e  then p r o j e c t  equat ion  (0.4) on PH and QH; t h i s  y i e l d s  a coupled 

system of equat ions  f o r  p and q: 

3 + vAq + QB(p + q) = Qf.  d t  (0.7) 

. 
Since  q i s  small i n  comparison with p one can specu la t e  t h a t  B(q,q) = 

B(q) i s  small i n  comparison w i t h  B(p,q) and B(q,p) and t h a t  t h e s e  quant i -  

t i e s  a r e  small i n  comparison wi th  B(p,p) = B(p). Also t h e  r e l a x a t i o n  t i m e  

f o r  t h e  l i n e a r  p a r t  of (0.7) of the o rde r  of (vAel)-l i s  much smaller 

than  t h a t  of (0.6) which i s  of order  This  sugges t s  t h a t  an 

accep tab le  approximation t o  (0.7) i s  g iven  by 

(vAl)-'. 
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This leads us to introduce in H the finite dimensional manifold MO with 

equation 

(0.9) 

It is one of our aims to justify this approximation: for large times, i.e., 

after a sufficiently long transient period, the ratio of q to u is of the 

for large m, whereas the distance of q to Mo, (compared order of - 
to a quantity of the order of u), is of the order of (7) for. 

large m. The proof of this result appears in Sec. 2. Hence, for large time, 

A 1  

L l  A 1  3/2  

lU+l 

an orbit u(t) = p(t) + q(t) corresponding to any solution of (0.4) becomes 

closer to % than to the linear space q = 0. We intend in a subsequent 

work to construct a whole family of explicitly defined manifolds provid- 

ing better and better approximations to the orbits as j increases(l). The 
Mj  

manifold M o  (as well as the future manifolds Mj) plays the role of 

approximate inertial manifolds to the two dimensional Navier-Stokes equations 

and constitutes a substitute to them in situations where we cannot prove the 

existence of such manifolds. 

In Sec. 3 we recall and improve significantly a result in 171: this 

leads us to introduce a Lipschitz manifold 1 of finite dimension like M o ,  

i 

~~ 

('IC. Foias, 0. Manley, and R. Temam, Article in preparation. 
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c 

to which all the orbits of (0.4) remain eventually at a distance less than 

exp(-c X1/Xmtl). Hence 1 provides a much better approximation than M . , .  

but, on the contrary, the proof of existence is nonconstructive and does not 

provide an explicit expression like (0.9). It provides nevertheless an in- 

teresting complementary aspect. Let us mention also that another type of 

approximate manifold containing all the stationary solutions has been exhibit- 

ed by E. Titi('). 

This article ends with an Appendix providing a technical but totally new 

method of estimating certain norms of the solutions of an evolution equation 

like (0.4): taking advantage of the analyticity in time of the solutions, we 

estimate the domain of analyticity in the complex time plan and using Cauchy's 

formula, we readily deduce estimates on the derivatives dku/dtk from the 

estimates on u in the domain of analyticity; these estimates on the time 

derivatives of u are much sharper than those obtained by real variable 

methods . 
The results presented here were announced in [O]. We intend in a subse- 

quent work to derive approximate manifolds of higher order than MO and to 

study the three dimensional case. 

1. FAST DECAY OF SMALL EDDIES 

In Secs. 1.1 and 1.2 we briefly recall the functional setting of the 

Then in Sec. 1.3 we derive Navier-Stokes equations and some useful estimates. 

the estimates on the magnitude of the small eddies. 

(l)E. Titi, Article in preparation. 
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1.1 Pre l imina r i e s  

A s  we r e c a l l e d  i n  t h e  I n t r o d u c t i o n ,  t h e  Navier-Stokes equa t ions  

(0.1)(0.2) assoc ia ted  t o  one of t he  boundary cond i t ions  (0.3) i s  equ iva len t  t o  

an  evo lu t ion  equat ion 

- d’ + VAU + B(u) = f 
d t  

i n  an appropr i a t e  H i l b e r t  space H. Here f E H ,  v > 0 ,  A i s  a l i n e a r  

s e l f - a d j o i n t  p o s i t i v e  ope ra to r  wi th  domain A-l D(A)  C H, and whose inve r se  

i s  compact; we have B(u) = B(u,u) where B ( * , * )  is  a b i l i n e a r  compact 

ope ra to r  from D ( A )  (endowed with the  norm ! A *  1 )  i n t o  H; H is a H i l b e r t  

subspace of L 2 ( Q ) 2 .  Its norm and s c a l a r  product a r e  denoted 1 . 1 ,  ( e  , * )  

as those of L2(Q)*  o r  L2(Q);  f o r  t he  d e t a i l s  s ee  [111[121. 

We recall t h a t  f o r  uo g iven  i n  H t h e  i n i t i a l  va lue  problem 

(1.1)( 1.2): 

(1.2) u(0)  = uo, 

possesses  a unique s o l u t i o n  u def ined  f o r  a l l  t > 0 and such t h a t  

h e r e  V = D(A1/* )  and t h e  norm IAL/2*  I = R e i  on V is  equ iva len t  t o  the 

L norm of grad U. I f  uo E V then  2 

(1.4) 



i 

-7- 

In both cases (uo 8 H or V), u(*) is lyti in t with values in 

D(A); the domain of analyticity of u in the complex plane Ct comprises a 

band around and is described in more details in the Appendix. 

It is useful here to reproduce some a priori estimates verified by the 

solutions u of (l*l)(l.2). Before that we recall some inequalities (contin- 

uity properties) concerning B (see [7]): for every u, v, w is D(A): 

where cl, c2 like the quantities ci, c;, which will appear subsequently, 

are dimensionless constraints (l). Also we recall from [l] [31 the inequality 

from which we deduce that 

and using (1.7) 

(l)These constants can be absolute constants or they may depend on the shape 
of 52: by this we mean that they are invariant by translation or homothety 
of R 
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1.2 Behavior of Small Eddies 

A s  mentioned i n  t h e  I n t r o d u c t i o n  we f i x  an  i n t e g e r  m E N and denote  

by p = p, t h e  p r o j e c t o r  i n  H onto t h e  space spanned by the  f i r s t  m 

e i g e n v e c t o r s  of A, wl,..- ,wm; we se t  a l s o  Q = Q, = I - P,, and f o r  t h e  

sake of s i m p l i c i t y  

We write p = Pu, q = Qu; p r e p r e s e n t s  a s u p e r p o s i t i o n  of " l a rge  eddies" of 

s i z e  l a r g e r  than A'1/2, and q r e p r e s e n t s  "small eddies" of s i z e  smaller 

. By p r o j e c t i n g  (1.1) on PH and QH we f i n d  s i n c e  PA = AP t h a n  Am+l 

and QA = AQ: 

m 
-1 /2 

(1.10) 

(1.11) 

* +  vAp + PB(p + q) = Pf d t  

.%. + vAq + QB(p + q) = Qf . d t  

We t ake  the  s c a l a r  product of (1.10) with q i n  H: 

I d  2 
' 2 ~  l q l  (1.12) + vlq1I2 = ( Q f , q )  - ( B ( P  + q ) ,  4 ) -  

Thanks t o  t h e  o r t h o g o n a l i t y  p rope r ty  
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the right hand side of (1 .11 )  reduces to 

Using ( 1 . 6 )  and Schwarz inequality we majorize it by 

I 

We denote now by MO (resp. MI, M2) a bound of IU1 (resP* Nul, IAUI), on 

the interval of time I = (to,-) under consideration 

(1.14) M~ = S I J ~ ~ U ( S )  I ,  M~ = supnu(s)n , M~ = SUP~AU(S) I ;  
SE I SE I SE I 

we observe that 
2 2 2 lApl Am Npll = Xlpl 

and set 

( 1  . 15)  

We obtain 

b l  L = ( 1  + log-). 
A 1  
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Hence, assuming t h a t  c2 A-1/2Ml v ,  i .e.,  

(1 .17)  

(1.16) y i e l d s  

d 2 
d t  - Is1 + vh (1.19) 

We i n f e r  e a s i l y  from (1.19) t h a t  f o r  t > t l ,  t l ,  t E I: - 

Before i n t e r p r e t i n g  t h i s  i n e q u a l i t y ,  we d e r i v e  a similar i n e q u a l i t y  f o r  t h e  

(H1) V norm. Taking t h e  scalar  product of (1.11) wi th  Aq i n  H we f i n d  

-- 1 d  
2 d t  11ql12 + vIAqI2 = (Qf,Aq) - (B(p + q ) ,  Aq). 
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hand s i d e  of t h i s  equa t ion  by 

Thus, 

(1.21) 

(1.22) 

< (wi th  Young‘s i n e q u a l i t y )  - 
4 2 1  2 c;MIL c; 

V Lz lAql + v  l Q f l  +-+ - 3 dM 0 1’ 
V 

V 

M:L M ~ M ~  2 4  

V 3 
Qfl 2 +-+-) 

V 

M:L M ~ M ~  2 4  

+ - + -) 
V 3 

d 2 1 2 - Uql12 + vhllqll 5 C;(Y lQf I d t  
V 

and we conclude t h a t  

(1.23) 

2 2 2 
I n  (1.20) and (1.23) we can bound l q ( t 1 I 2  and Iq(tl) l l  by Mo and M I  

r e s p e c t i v e l y .  Then a f t e r  a time depending only  on Mo (or M i ) ,  v and 

A =  t h e  term involv ing  t becames n e g l i g i b l e  and we o b t a i n  
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(1.24) 

f o r  t la rge .  A l t e r n a t i v e l y ,  denot ing  by K, K i ,  K ; ,  some q u a n t i t i e s  

which depend only on t h e  d a t a  v ,  f ,  Q, and Mo, M I ,  M 2 ,  we rewrite (1.24) 

as 

(1.25) 

Using a l s o  the r e s u l t s  i n  t h e  Appendix we conclude t h e  fo l lowing  

Theorem 1.1: We assme t h a t  m is s u f f i c i e n t l y  l a r g e  so t h a t  (1.17) 

ho lds .  Then f o r  any o r b i t  of (1.11, a f t e r  a t i m e  t* which depends only  on 

t h e  i n i t i a l  value 

small i n  t h e  following sense  

(1.26) 

the  small edd ie s  component of 

The f i r s t  two i n e q u a l i t i e s  i n  (1.26) fo l low from (1.25); t h e  t h i r d  one fo l lows  
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from (1 .25 )  and the  analog of (A.15) f o r  q ( l ) .  The f o u r t h  i n e q u a l i t y  i s  

o b t a i n e d  by w r i t i n g  

VAq = Qf - q’ - QB(p + q) 

and u t i l i z i n g  ( 1 . 5 ) ,  ( 1 . 6 ) ,  ( 1 * 8 ) .  

I n  Sec. 1 .3  h e r e a f t e r  we intend t o  provide a more e x p l i c i  

c o n s t a n t s  K i n  the case of space p e r i o d i c  flows. 

1 . 3  The Space P e r i o d i c  Case 

form of 

We f i r s t  review t h e  well-known a p r i o r i  e s t i m a t e s  on t h e  s o l u t i o n s  

( l * l ) .  This w i l l  y i e l d  more e x p l i c i t  exp res s ions  f o r  Mo, M i ,  M2- 

I 

t 

he 

of 

We take the  scalar  product of ( 1 . 1 )  wi th  u i n  H;  u s ing  t h e  ot tho-  

g o n a l i t y  p rope r ty  (1 .13 )  we o b t a i n  

( 1 . 2 6 )  

1 d  
2 d t  
- - + V M 2  = ( f , u )  1. If1 IUI  

V 2 1 2 5~ U U H  + -  I f1  2vx 

d 2 1 2 - l U l 2  + vnun < - d t  - v x l  

( l )Note  t h a t  q i s  a n a l y t i c  i n  the  same reg ion  of t h e  complex p l a n  as U. 
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Theorem 2.1: - For t s u f f i c i e n t l y  l a r g e ,  t 2 t,, any o r b i t  of ( 1 . 1 )  

remains a t  a d i s t a n c e  i n  H of PmH of t h e  o r d e r  of . L 1 l 2 6  and a t  a 

d i s t a n c e  i n  H - of Mo of the  o rde r  of K L c S ~ ' ~ .  I n  the  norm of V ,  the 
corresponding d i s t a n c e s  a r e  of o r d e r  ~6 1/2L1/2 - and K L ~ ;  t he  c o n s t a n t s  

K depend on the  d a t a  u, X I f  I ,  & t* depends on these  q u a n t i t i e s  

and on R o ,  when l u ( 0 ) l  Ro. 

3. A NONCONSTRUCTIVE- RESULT 

Our a i m  i n  t h i s  l a s t  s e c t i o n  i s  t o  e x h i b i t  a manifold 1 which 1s 

L i p s c h i t z ,  has f i n i t e  dimension, and cap tu res  the  s o l u t i o n s  of ( 1 . 1 )  i n  a much 

narrower neighborhood than M, does. However, t h e  e x i s t e n c e  of 1 1s- 

proved i n  a nonconstruct ive way, by oppos i t i on  wi th  the  very simple and ex- 

p l i c i t  equat ion (2.2) a v a i l a b l e  f o r  big. Secs. 3 .1  and 3 . 2  provide p r e l i m i -  

nary r e s u l t s  and Sec. 3.3 c o n t a i n s  the ma in  one. 

3 . 1  Quotient  of Norms 

consider  two s o l u t i o n s  u ,  v of ( 1 . 1 )  and set w = u - v: 

e+ u Au + B(u) = f ,  
d t  u (0 )  = uo, 

vO , e+ u Av + B(v) = f ,  
d t  v (0 )  = 

2 + u Aw + B(u,w) + B(w,v) = 0. 
d t  

denote t h e  q u o t i e n t  of norms iwA2/lw12; t hen  
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where 

(3.5) 

2 2 
(we ,w) = 7 (we ,Aw - UW) - =  da 2((w',w)) - 211wll 

Id2 Iw14 Iw1 
dt 

= -  (VAW + B(u,w) + B(w,v), AW - aw). Iw12 
2 Since (Aw, Aw - aw) = 1Aw - awl , we conclude, using (1.5), that 

2 IAw - U W I  =: 
du 2v - + -  dt 

lw12 

(B(u,w) + B(w,v), Aw - awl 2 = - -  

lw12 

2 < -  
IWI 

- 

c1 < -  
lw12 

- 

V < -  
lw12 

- 

Hence 

(3.4) 

2 
AW - U W ~  2 + - 2c1 ( 1 1 1 1  [Au~ + IIvll IAvlX, -1 /2 10. 

V 

2 IAw - awl < pa da v - + -  
dt - 

l w 1 2  

2 
- 2cl 

vA 1 
P = Pu + P,, Pu - 7 14. 

By integration of the differential inequality a e  - < p a, we find that for 

tl < t < T < tl + T 
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Now we estimate t h e  i n t e g r a l  of p i n  terms of t h e  d a t a ;  as i n  (1.16) 

we assume t h a t  on the  i n t e r v a l  of time under c o n s i d e r a t i o n  

(3.7) IIu(t)ll - < M1, Ilv(t)II - < M1. 

With an appropr i a t e  va lue  of (3.7) w i l l  be v a l i d  on some f i n i t e  i n t e r v a l  

of time [O,T], o r  on some i n t e r v a l  of t i m e  (to,-), once t h e  o r b i t s  have 

e n t e r e d  the  absorbing set .  

M 1  

We have 

T 2c. T 

2c; ‘I 

M (T - t)lI2(1 IAu12ds)1/2. 
5,- v A  1 1 t 

An estimate on Au i s  obtained by t ak ing  

Au i n  H: 

d - llul12 + 2u lAuI2 = -2(B(u) d t  

t h e  s c a l a r  product of (3.1) w i th  

< (wi th  (1.5)) - 
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(3.9) 

and 

(3.10) 

d - IIul12 + v IAu d t  
2 1  < -  - v  

I 1 

are t h e  same, we have 
p V  

Since t h e  estimates on v and 

(3.11) 

3.2 The squeezing p rope r ty  

The squeezing p r o p e r t y  i s  an important p rope r ty  of t h e  s o l u t i o n s  of t h e  

Navier-Stokes equa t ions  which has been introduced i n  [61. A s t r o n g e r  form of 

i t ,  c a l l e d  the  s t r o n g  squeezing property o r  t h e  cone p rope r ty  was proven i n  

[41 for some o t h e r ,  more s t r o n g l y  d i s s i p a t i v e  equat ions.  For the  two dimen- 

s i o n a l  Navier-Stokes e q u a t i o n s ,  we der ive he re  a form of t h e  squeezing p r o p e r  

t y  sha rpe r  than i n  [ 6 ] .  
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We t ake  the s c a l a r  product  of (3.3) wi th  w i n  H and thanks t o  (1.13), 

(1.16) we f ind 

- d l w I 2  + 2vIIwl12 = -2b(w, v, w) 
d t  

- < 2c21wI IIwll llvll 

2 
2 c2 2 - < vllwll + y l W l 2  IIvll 

2 
2 c 2 2  2 < ~ l l ~ l l  + - M1 ~ w I  V - 

(3.12) 
2 

+ (V  7 - - M1) lw12 - < 0. 
d 2 II w I1 c2 2 I w I  V I W I  

We cons ide r  to ,  t ,  0 < t < to - < T and wri te ,  u s ing  (3.6)(3.11) 

(3.13) 

Thus, 

(3.14) 
2 

d 
d t  V 

and by i n t e g r a t i o n  
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and 

(3.16) 

Of course t h e  i n t e r v a l  (0,tO) can be replaced by any i n t e r v a l  

on which t h e  bound (3.7) is v a l i d .  

( t l  , t l  + t o )  

I n  conclusion ( t h i s  i s  t h e  squeezing p r o p e r t y ) ,  whenever (3.7) i s  v a l i d  

on some i n t e r v a l  ( t l ,  t l  + t o ) ,  then w = u - v s a t i s f i e s  one of t h e  

fol lowing cond i t ions :  

o r  

(3.17b) 

Since K ~ ,  K~ are independent of m, t he  exponen t i a l  term i n  (3.17b) can be 

made a r b i t r a r i l y  small by choosing m s u f f i c i e n t l y  l a r g e ;  we w i l l  t ake  advan- 

t age  of t h i s  remark i n  Sec. 3.3. 

Of s l i g h t l y  more e x p l i c i t  form of  K 4 ,  K 5  
can be de r ived  by us ing  the  

Grashof number 

We f i n d  (T = to): 

G = I f  ( / v 2 h l  and the Reynolds type number Rn = M1/vXl 1 /2 
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(3.18) 

K3 = C ~ R ~ ( ~ A ~ ) ” ~ ( R ~  + t O v A I G  2 + tOvAIRn) 6 1/2 

I n  the  space pe r iod ic  case we have seen t h a t ,  f o r  l a r g e  times, we can t a k e  

= (21flG)1/2. Then R = 47 G and t h e  above q u a n t i t i e s  become 

M I  

n 

= C ; ( V A ~ ) ’ / ~ ( G ~  + tovAIG 4 + tOvAIG 8 ) 1/2 
K3 

(3.19) K~ = 2c2(vAl)G 2 2 

3 .3  The Approximate Manif o l d  

We denote by S ( t ) ,  t > 0 t h e  o p e r a t o r  i n  H: uo + u ( t ) ,  where u(.)  

i s  the  unique s o l u t i o n  of (1.1) s a t i s f y i n g  u(0) = uoo The o p e r a t o r s  S ( t ) ,  

t > 0, form a semigroup i n  H. 

The squeezing p rope r ty  t e l l s  u s  t h a t  i f  u ( * ) ,  v(0 )  are two s o l u t i o n s  

of (1.1)) lying i n  t h e  b a l l  {#  E v, i l # U  < Ml}, f o r  0 < t < T ,  t hen  a t  

each time t E [O,T] and f o r  every m E I& we have e i t h e r  

- - -  

o r  
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I 

as above. K49 K 5  

Now we choose t o  E [O,T], m E @ and consider  a s u b s e t  1 = 1 (m) of 

S ( t o )  (uo E V ,  UuoII - < MI} 

which i s  maximal under the  property 

By t h i s  we mean t h a t  i f  u E 1 (m) t h e n  

{v  E V, v s a t i s f i e s  (3.20)) 1 (m). 

The e x i s t e n c e  of such a maximal set is easy. 

We then apply t h e  squeezing property:  whenever Ilu(s)l - < M1, we see 

t h a t  S ( t o ) u ( s )  = u ( t o  + s) e i t h e r  belongs t o  1 (m), i.e., 

f o r  some + E V such t h a  

then f o r  every such + 

IS ( t0 )u ( s )  - S(to)+ 
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4 4  
< -  
- x1 

In all cases the distance of S(t0)u s) to 1 (m) is bounded by 

We can choose to = (vAl)-l and the bound becomes 

2M1 K5 ?n+l .h1/2 exp(- T T )  1 
1 provided that 

( 3 . 2 1 )  2K 4 >-. 
5 1  x1 - K VA 

By translation in time (t + t - t,), we conclude that once the orbit u has 

entered the absorbing set {HOll  L M1), which happens for t > t, = t,(Ro) 

(for lu(0) I 5 Ro), the distance of S(t)uo to 1 (m) is bounded by a 

given quantity E, 

- 

( 3 . 2 2 )  

provided 

i-e., 

( 3 . 2 3 )  

K5 ?U+l exP (- 7) - < E, 
1 

4 > - - log E. httl 
7- K5 
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By d e f i n i t i o n  the  s e t  1 (m) enjoys t h e  proper ty  t h a t  

lQm(u - < IP (u - v ) l ,  Vu, v E M ( m ) .  m - 

Hence, 1 (m) i s  t h e  graph of a L ipsch i t z  func t ion  

By t h e  Kirszbaum ex tens ion  Theorem [16] P can be extended as a L i p s c h i t z  

f u n c t i o n  (wi th  the  same cons tan t )  form PmH i n t o  QmH, t h a t  we s t i l l  denote-  

by 1. Now Y is  def ined  from PmH i n t o  QmH, and i t s  graph is a 

L i p s c h i t z  manifold above a l l  of  PmH. 

I n  conclusion we have proved the fol lowing theorem 

Theorem 3.1: I f  m i s  s u f f i c i e n t l y  large so t h a t  (3.21) is s a t i s f i e d  ( 1 )  - 
t h e n  t h e r e  e x i s t s  a L i p s c h i t z  manifold 1 ( m )  of dimension m, which en joys  

t h e  fo l lowing  property:  f o r  an so lu t ion  u ( * )  of (1.11, f o r  t s u f f i -  

H - of u ( t )  - t o  1 (m)  i s  majorized by 

(1) as above wi th  to = (VAl)-', and M1 t h e  r a d i u s  of an absorb ing  
set y 4 y  in 7 for  (1.1). 
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.APPENDIX 

Est imates  i n  the Complex Time Plane 

It was proved i n  [61 ( s e e  also 1121) t h a t  t he  s o l u t i o n s  t o  t h e  Navier- 

S tokes  equat ions  a r e  a n a l y t i c  i n  time; we want t o  show how one can then use 

Cauchy's formula t o  g e t  a p r i o r i  es t imates  on t h e  time d e r i v a t i v e s  of t h e  so- 

l u t i o n s .  The main p o i n t  i n  t h e  proof i s  t o  determine t h e  width of t h e  band of 

a n a l y t i c i t y  of t h e  s o l u t i o n  around the  r e a l  a x i s  &; t h i s  w i l l  fo l low a s  

i n  [6,12] from a p r i o r i  e s t i m a t e s  on t h e  s o l u t i o n  i n  t h e  complex plan.  

The complex t i m e  i s  denoted 5 = se ; 37, NA) a r e  t h e  

complexif ied spaces  of H, V, D(A); A, B a r e  extended a s  l i n e a r  and b i l i n e a r  

o p e r a t o r s  r e s p e c t i v e l y  from NA) i n t o  M :  

i e  

Vu = u + i u 2 ,  v v + i v 2  E: N A ) .  The Navier-Stokes equa t ion  (1 . 1 )  

becomes ( u  = ~ ( 5 ) ) :  

1 1 

du+ VAU + B(u) = f 
d5 

i 

u(0) = uo. 
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Assuming that uo and as in (1.14), we denote 

by Mo, MI, the supremum of lu(t> I and IIu(t)il, t E R+. We take the 

scalar product in M of (A.3) with Au; we multiply the resulting equation 

by eie and take its real part. This yields 

V (or mr), ~ 1 %  E L" (Xi,.; rm) 

d 11 u(seie )it 2 + vcose IAu(seie 1 1 2 = 
2 ds 

We expand by bilinearity (using (A.2)) and bound the resulting expressions 

with the help of (1.8): 

Also 
n 

Hence (with u = u(seie)): 

d 2 - IIul12 + vcoseIAu) ds - < 

<-  PI2 IIuII 2 IAUI ( 1  + log 7) lAuI2 1'2. 
h 11 ull + c5 - vcose 

> 1 and consider the function 
z=*- 
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2 1/2 x vcose 
z2 + c llullx1/2z(l + log2 ) 1 

2 5 z -b $ ( z )  = - 

By elementary computations (1) 

( A . 7 )  

2 2  4c lull 5 
2 2  
5 ) ,  for z > 1, 
c null 

log ( 2 - o(z) 2vcose xlv cos e 

and ( A . 6 )  yields 

lAu12 < - uuu + - ds 2 
d 2 vcose - 

2 2  4c51 uu 

h1v cos e 

2 ( A . 8 )  
C 

< -EL+ lluY4 (log ) - V C O ~  2vcose 

2 (1 + 4c5) 

x v cos2e 
(If1 + Wu(seie)n2) we infer from ( A . 8 )  that 2 Setting y(s)  = 

1 

where ci is an appropriate nondimensional constant. As long as 

y(s> 2y0 = 2y(O), we have 

(l)Looking for the maximum of -a2z2 + B 2 (1  + log z 2 1, we find 

z ~ ( 1  + log z2)1’2 5 az 2 + Bz(1og 2 B2) 1/2 

< 2az 2 + - -  1 B 2  (log 2) B2 0 

0 

a 4 a  - 

1/2 
x lvcosB 

, 8 C5lulx1 4 
We then choose a = 
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YO 
Y ( S )  1 - c; X1vcos010g(2yo)s ’ 

and th i s  is  indeed - < 2y0 as  long as s - < T,: 

For IuoII - < M1, we replace T* by 

3 ( A . 9 )  T*(M1) = 

1 11% 2 (7 + 2 2  
cos e X ~ V  COS e cos 8 h1v cos 0 

. 
G G M: 2c’X vcos8(-+ 2 2 2  1 1  

Thus 

(A.  10) 

f o r  

3cos8 
2 

I M. 2 M. 
o < s s  - 

2 )  
2c’X v ( G  + -7) 1 + l o g  2(- ti + 

1 1  cos e Xp2cos e lU 

and in  particular for 
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( A . 1 1 )  
 COS^ o < s <  - -  

+ l o g  4(G + 

2 1 when cos  8 LT . 
Following the  method developed i n  [ 6 ]  we conclude t h a t  the  s o l u t i o n  u 

of (A.3) ( o r  (1.a)) is  a n a l y t i c  i n  the r eg ion  

3 a =  

+ l o g  4(G + 

which comprises t h e  reg ions  

and 

A t  any poin t  t E l$, 

r centered  a t  t of r a d i u s  a / 4 :  

t - > a, we can apply Cauchy's formula t o  t h e  c i rc le  

(A. 14)  

Thus, 

(A. 15) 
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(A.  16) d u  k qk sup  II- (t) l l  k! M1. 
t>a - d t k  a 

E x p l i c i t  va lues  of MO and M1 were de r ived  i n  (1.36) f o r  t he  two 

This y i e l d s  dimensional space p e r i o d i c  case  : 

(assuming G - > 1): 

M1 = (21f IG)1/2( t  - > t2). 

(A. 1 7 )  

2 2 v 

2c;X1u(G + 2G )log 4(G + 2G ) 

“5 
a >  - 2 

XluG logG 

and we deduce from (A.15), (A.16) t h a t  f o r  t s u f f i c i e n t l y  l a r g e  (1 1 

(A. 18) 

I n  p a r t i c u l a r  (k = 1 ) :  

(A. 19) 

This  produces an i n t e r e s t i n g  bound on IAu(t) l  f o r  t l a r g e :  

( l ) T h i s  means as i n  Theorem 1.1 and elsewhere t 1 T*(Ro,v , X I ,  I f I 1, f o r  
luol < R o o  
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